

GFP-like Fluorophores as DNA Labels for Studying DNA—Protein **Interactions**

Jan Riedl, Petra Ménová, Radek Pohl, Petr Orság, Miroslav Fojta, and Michal Hocek*,

Supporting Information

ABSTRACT: GFP-like 3,5-difluoro-4-hydroxybenzylideneimidazolinone (FBI) and 3,5-bis(methoxy)-4-hydroxy-benzylideneimidazolinone (MBI) labels were attached to dCTP through a propargyl linker, and the resulting labeled nucleotides (dCMBITP and dCFBITP) were used for a facile enzymatic synthesis of oligonucleotide or DNA probes by polymerase-catalyzed primer extension. The MBI/FBI-labeled DNA probes exerted low fluorescence that was increased 2-3.2 times upon binding of a protein. The concept was demonstrated on sequence-specific binding of p53 to dsDNA and on nonspecific binding of single strand binding protein to an oligonucleotide. The FBI label was also used for a time-resolved experiment monitoring a singlenucleotide incorporation followed by primer extension by Vent(exo-) polymerase.

INTRODUCTION

Fluorescent labeling of biomolecules is an indispensable tool in chemical and molecular biology. In nucleic acids, intrinsically fluorescent nucleobase analogues or nucleobase-linked fluorophores have been used and applied in hybridization assays,² single-nucleotide polymorphism typing,³ monitoring of the polarity of the microenvironment,⁴ and monitoring of interactions with a ligand.⁵ However, very few examples of the use of fluorescent labeling of nucleic acids for direct detection of interactions with unlabeled proteins^{6,7} or peptides⁸ have been reported, although an analogous use in protein labeling for the detection of peptide-protein or protein-DNA¹⁰ interaction is well established. Very recently, we have developed¹¹ novel nucleotides bearing solvatochromic aminophthalimide fluorophores that were used as building blocks for the enzymatic synthesis of labeled DNA that enhanced fluorescence (up to 2-fold) upon binding of some proteins.

4-Hydroxybenzylideneimidazolinone (HBI) is a greenemitting fluorophore occurring in green fluorescent protein (GFP). 12 Unlike native GFP, HBI is very weakly fluorescent in denatured protein and as a free molecule prepared by chemical synthesis.¹³ This phenomenon is caused by non-emissive energy dissipation caused by flexibility of bond rotation of the free HBI molecule. Relaxation to ground state by an emissive pathway requires planarity of a molecule accompanied by blocking of bond rotation. This condition is fulfilled in native GFP by specific interactions within the protein. The HBI fluorescence can also be induced by constrained blocking of bond rotation of free HBI, which was achieved by interactions of HBI derivatives with RNA.14 Since the HBI requires suppression of subtle motions, 3,5-difluoro-4-hydroxybenzylideneimidazolinone (FBI) and 3,5-bis(methoxy)-4-hydroxybenzylideneimidazolinone (MBI) were found to be more useful than HBI for inducing fluorescence. 14 To the best of our knowledge, the only example 15 of a GFP-like fluorophore (2hydroxybenzylidene-imidazolinone linked to 2'-OH of a ribose) was used for the labeling of oligonucleotides (ONs) showing large Stokes shifts.

Here we report on the synthesis of MBI and FBI conjugates with nucleoside triphosphates (dNTPs) linked via nonconjugate propargyl tether at C-5 of cytosine and their incorporation of DNA. We assumed that the MBI and FBI tags might be able to increase their fluorescence upon binding of the labeled DNA to a protein due to restricted rotation of the fluorophores. Such mechanism would be conceptually different from our previous solvatochromic labels.¹¹

RESULTS AND DISCUSSION

Synthesis and Enzymatic Incorporation of MBI- and FBI-Labeled dNTPs. Our intended strategy for the synthesis of fluorescent ON or DNA probes was based on the polymerase incorporation of base-modified dNTPs¹⁶ bearing the appropriate labels. The synthesis of the modified dNTPs

Received: August 8, 2012 Published: August 30, 2012

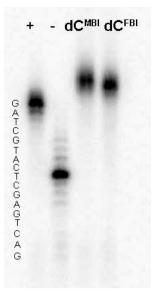
[†]Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic

Finstitute of Biophsics, v.v.i. Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno, Czech Republic

[§]Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic

was envisaged through the direct Sonogashira cross-coupling ¹⁷ of halogenated dNTPs with a corresponding fluorophore-linked terminal acetylenes. These building blocks were prepared in analogy ¹⁴ to the synthesis of the fluorophores.

3,5-Dimethoxy- and 3,5-difluoro-4-hydroxybenzaldehydes were condensed with *N*-acetylglycine and cyclized by using acetic anhydride as a solvent to form oxazolinone derivatives **MBO** (1a) and **FBO** (1b) in good yields (Scheme 1). The


Scheme 1. Synthesis of MBI- and FBI-Labeled dNTPs^a

"Reagents and conditions: (i) Ac₂O, (ii) propargylamine, K₂CO₃, EtOH (99%), (iii) Pd(OAc)₂, TPPTS, CuI, EtN(*i*-Pr)₂, water/acetonitrile (2:1).

oxazolinones were subsequently converted to propargylimidazolinones P-MBI (2a) and P-FBI (2b) by treatment with propargylamine in moderate yields (47% and 25%, respectively). The reaction also led to the formation of hydrolyzed byproduct, which were removed by extraction or by silica-gel chromatography (for 2b). The desired MBI- and FBI-labeled dNTPs were prepared in one step by aqueousphase Sonogashira coupling of dC¹TP with P-MBI (2a) or with P-FBI (2b) in the presence of palladium acetate, tris(3-sulfonatophenyl)phosphine (TPPTS), CuI, and the Hünnig base in water/acetonitrile (2:1) in moderate yields 21% and 28%, respectively (Scheme 1).

Both dC^{MBI}TP and dC^{FBI}TP were tested for the incorporation to DNA in a primer extension (PEX) experiment using KOD XL DNA polymerase and temp^{rnd16} as template (Figure 1, Table 1). The DNA polymerase was able to incorporate both dC^{M/FBI}TPs smoothly to form full length products, double-stranded 31-bp DNA bearing four modifications. In order to isolate single-stranded ONs (ssONs), the PEX was performed with a biotinylated template followed by magnetoseparation^{22a} on streptavidin-coated magnetic beads and release under denaturating conditions.

Photophysical Properties of MBI- and FBI-Labeled DNA. Free MBI and FBI fluorophores emit very low fluorescence, as reported earlier. Hemission of both free

Figure 1. Incorporation of $dC^{MBI}TP$ and $dC^{FBI}TP$ using KOD XL DNA polymerase. PEX products contain four modifications using temp^{rnd16} template. Experiments are supplemented by positive control (+) (all natural dNTPs are present) and negative control (-) (absence of natural dCTP).

fluorophores is pH-dependent due to ionization of the phenol group. The p K_a value of MBI is 8, whereas the p K_a of FBI is 5.5 due to the -I effect of fluorine atoms. 14 MBI exerts a dual emission, ¹⁴ where the neutral form emits at 480 and the deprotonated form at 540 nm. On the other hand, a deprotonated form of FBI emits at 501 nm, while the neutral form is almost nonfluorescent, emitting at ca. 500 nm. To test the pH-dependence of the MBI/FBI-labeled DNA, we have prepared ssONs bearing either four MBI or four FBI modifications by primer extension and magnetoseparation (vide supra). Both the UV-vis and fluorescence spectroscopy of these modified ONs (Figures S1-S4 in Supporting Information) showed similar features as the free fluorophores, but the pK_2 values of the fluorophores linked to ON probes were shifted to more basic due to interactions with the ON: MBI changed its p K_a from 8 to 9.3, while FBI changed the p K_a from 5.5 to 6.5 (Supporting Information). Both fluorophores still retain the desired low intensity of fluorescence in DNA.

Study of MBI- and FBI-Labeled DNA with DNA Binding Proteins. Similarly as in our previous study with solvatochromic labels, ¹¹ the DNA—protein binding experiments were conducted on p53, ¹⁸ an important tumor suppressor ¹⁹ and cell cycle regulator, as an example of a sequence-specific protein binding to dsDNA and on single strand binding protein (SSB) as an example of a non-sequence-specific protein binding to ssONs. In addition, we tried to employ the labeled dC ^{FBI}TP for a time-resolved monitoring of their incorporation by Vent(exo-) polymerase and of the further movement of the enzyme along the DNA.

Binding Study with p53 Protein. Interactions of DNA with p53 protein were studied using a 50-nt oligonucleotide (pex^{p53} prepared from temp^{p53} template using dC^{MBI}TP (3a) or dC^{FBI}TP (3b)) containing a 20-nt p53 recognition sequence and bearing 11 dC^{MBI} or dC^{FBI} fluorophores (6 within and 5 outside the recognition sequence). Bovine serum albumine (BSA), which does not bind DNA, was used as a control.

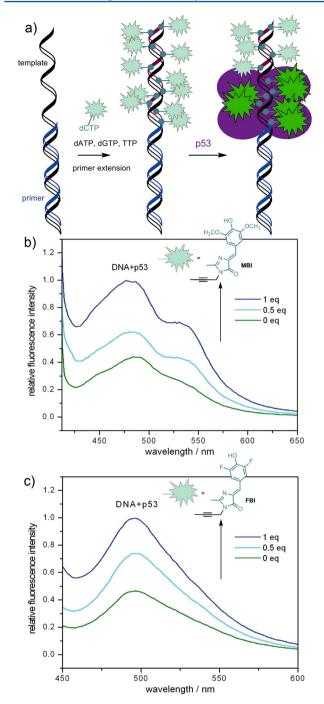
Table 1. List of Oligo-2'-deoxyribonucleotides Used or Synthesized^a

oligonucleotide	oligo-2'-deoxyribonucleotide sequence
$prim^{md b}$	5'-CATGGGCGCATGGG-3'
$temp^{\mathrm{md1}6b}$	5'-CTAGCATGAGCTCAGTCCCATGCCGCCCATG-3'
${ m ssDNA}^{{ m rnd16}c}$	5'-CATGGGCGCATGGGAC ^R TGAGC ^R TC ^R ATGC ^R TAG-3'
prim ^{p53} b	5'-GAATTCGATATCAAG-3'
temp ^{p53b}	5'-GACGGTATCGATAAGAGGCATGTCTAGGCATGTCTCTTGATATCGAATTC-3'
$prim^{vent\boldsymbol{b}}$	5'-CATGGGCGCATGGGC-3'
temp ^{ventb}	5'-CTAGCATGAGCTCAGGCCCATGCCGCCCATG-3'

"In the template (temp) ONs the segments forming a duplex with the primer are underlined, and the replicated segments are in bold. For magnetic separation of the extended primer strands, the templates were 5'-end biotinylated. Acronyms used in the text for primer extension products are analogous to those introduced for the templates (e.g., ssDNA PEX product ssDNA^{md16} was synthesized on temp^{md16} template, etc.). ^bPurchased oligonucleotide. ^cModel example using dC^R as modification.

The resulting MBI/FBI-labeled dsDNA (3 μ M) was titrated by 0.5 or 1 equiv of p53 solution. The results revealed a perfectly ratiometric increase of intensity of MBI and FBI fluorescence upon binding of p53 protein (Figure 2 and Figure S7 in Supporting Information). The increase of fluorescence confirmed our assumption of a more hindered rotation of fluorophore due to the interaction with the protein. On the other hand, the addition of BSA did not increase the fluorescence. The 2.3-fold increase of MBI fluorescence intensity at 484 nm was also accompanied by an additional emission shoulder with maximum around 530 nm (even higher increase of ca. 2.6-fold at this wavelength), which originates from the ionized form of fluorophore formed either only in the excited state or stabilized by binding protein. The binding of p53 to MBI-labeled DNA therefore not only increases the emission but also causes a dual emission. On the other hand, binding of p53 to the FBI-labeled DNA exerted a slightly lower 2.1-fold increase of fluorescence at 496 nm.

Binding Study with SSB Protein. Interactions of SSB protein with MBI/FBI-labeled DNA were studied on a 31-nt ssON probe bearing four MBI or FBI modifications (prepared by PEX using pex^{rnd16} followed by magnetoseparation) in the sequence. The intensity of fluorescence was monitored upon the addition of SSB protein solution, and again BSA was used as a control. The experiments revealed a fully ratiometric 2.0-fold increase of fluorescence intensity of MBI/FBI-labeled ONs upon SSB binding at 489 and 501 nm, respectively (Figure 3). For MBI-modified ON, an additional emission band was observed at 535 nm, originating from the ionized form of the fluorophore. This additional emission band was even more significant than in the case of binding of p53 protein, showing a nearly 3.2-fold increase of fluorescence at this wavelength and even a 3.5-fold increase at 550 nm (Figure 3). This difference may indicate a different binding mode of the labeled ONs to SSB protein (according to the literature, 20 the ssON is coiled around the SSB tetramer). On the other hand, MBI- or FBIlabeled dsDNA (PEX product of pex^{rnd16} without magnetoseparation) exhibited very low increase of fluorescence upon SSB binding, indicating a priority of binding of SSB protein to ssDNA (Figures S5 and S6 in Supporting Information).


Monitoring of Incorporation of a dNTP and Primer Extension by Vent(exo-) DNA Polymerase. The last goal was to use the GFP-like labels for a time-resolved study of an enzymatic reaction, i.e., incorporation of a modified dNTP and movement of the polymerase along the DNA. For this purpose, only the FBI label was selected due to its simple emission behavior. The experiment was performed in two stages. At first, a single incorporation of the labeled dCFBITP into the primer

was studied using an equimolar amount of Vent(exo-) DNA polymerase (Figure 4). The fluorescence spectra were measured immediately and then every minute after the addition of the $dC^{FBI}TP$ until the change of fluorescence was completed. In the second stage, a mixture of natural dNTPs was added, which enabled the enzyme to continue the PEX and finish the DNA synthesis. Again, the fluorescence spectra were measured every minute until the change had finished. Figure 4d shows the expected increase of fluorescence upon the incorporation of the dCFBITP when the polymerase remains bound to the active site and thus interacts with the FBI label. The reaction and equilibrium of polymerase binding takes ca. 8 min to reach the maximum fluorescence enhancement (ca. 2.1-fold). Then, after the addition of the natural dNTPs (Figure 4e), the polymerase continued the synthesis of the DNA and moved along the duplex, releasing the FBI fluorophore. This caused a rapid decrease of fluorescence which reached the original low level within ca. 2 min. This experiment enables a direct monitoring of an enzymatic incorporation of a nucleotide and the following primer extension using an unmodified enzyme (this arrangement is much easier than the FRET techniques requiring labeling of both components²¹).

CONCLUSIONS

GFP-like hydroxybenzylideneimidazolinone labels MBI and FBI were studied as potential DNA labels for the studying of interactions with proteins. MBI- and FBI-labeled dCTPs (dCMBITP, dCFBITP) were prepared by aqueous Sonogashira coupling of propargyl-MBI or -FBI with halogenated dCITP in moderate yields. Both modified dCM/FBITPs were good substrates for Vent(exo-) and KOD XL polymerases and were incorporated to DNA by primer extension, enabling a simple synthesis of ssONs or dsDNA probes containing several site-specific MBI or FBI labels attached at the C-5 position of cytosine(s). Both fluorophores and the labeled DNA showed low fluorescence, which increased by 2.0-3.5 times upon binding of a protein to the ON or DNA probe due to hindered rotation of the fluorophores. The concept was proved both on a p53 to a dsDNA containing a specific recognition sequence and on a non-sequence-specific binding of SSB to ssON. The FBI label exerted simple increase of fluorescence at the same wavelength, whereas the MBI label showed a dual fluorescence with an additional emission band (at 530 or 535 nm) due to phenol deprotonation. Studying and monitoring of other DNAbinding proteins will continue in our laboratory.

FBI fluorophore was also successfully applied for a timeresolved detection of a single nucleotide incorporation by DNA polymerase (increase of fluorescence) and for the observation

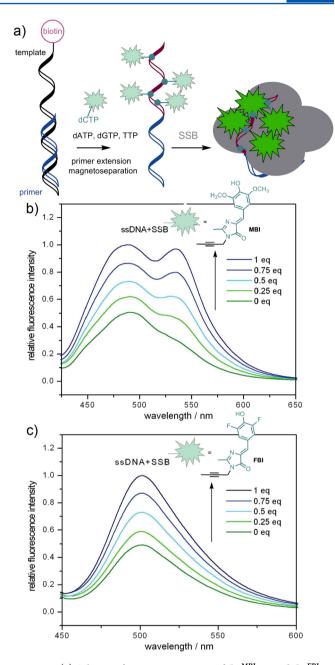


Figure 2. (a) Scheme of PEX incorporation of $dC^{MBI}TP$ and $dC^{FBI}TP$ to dsDNA and binding of p53. Photophysical properties of (b) dC^{MBI} or (c) dC^{FBI} -labeled DNA upon binding of p53 protein.

of a further movement of the enzyme during primer extension (decrease of fluorescence). This approach using just a single modified dNTP is much simpler and more straightforward than standard FRET techniques for the studying of the primer extension. The concept certainly has a potential for studying of other enzymatic reactions, e.g., DNA repair of methylation. Studies along these lines will continue in our laboratories.

■ EXPERIMENTAL SECTION

NMR spectra were recorded on a 600 MHz (600.1 MHz for 1 H, 150.9 MHz for 13 C) or a 500 MHz (499.8 or 500.0 MHz for 1 H, 470.3 MHz for 19 F, 200.3 MHz for 31 P, 125.7 MHz for 13 C) spectrometer from

Figure 3. (a) Scheme of PEX incorporation of $dC^{MBI}TP$ and $dC^{FBI}TP$ to ssON and binding of SSB. Photophysical properties of (b) dC^{MBI} or (c) dC^{FBI} -labeled ON upon binding of SSB protein.

sample solutions in D₂O, DMSO-d₆, or CDCl₃. Chemical shifts (in ppm, δ scale) were referenced as follows: CDCl₃ solutions, ¹H referenced to TMS ($\delta = 0$ ppm), ¹³C referenced to the solvent signal (δ = 77.0 ppm); DMSO- d_6 solutions, ¹H referenced to the residual solvent signal (δ = 2.50 ppm), ¹³C referenced to the solvent signal (δ = 39.7 ppm); D₂O solutions, referenced to dioxane as an internal standard ($\delta(^{1}\text{H})$ = 3.75 ppm, $\delta(^{13}\text{C})$ = 69.3 ppm). ^{31}P NMR spectra were referenced to the phosphate buffer signal (δ = 2.35 ppm). ¹⁹F NMR spectra were referenced to C_6F_6 as an external standard (δ = -163.0 ppm). Coupling constants (J) are given in Hz. NMR spectra of dNTPs were measured in phosphate buffer at pH 7.1. Complete assignment of all NMR signals was achieved by using a combination of H,H-COSY, H,C-HSQC, and H,C-HMBC experiments. Semipreparative separation of nucleoside triphosphates was performed by HPLC on a column packed with 10 µm C18 reversed phase (Phenomenex, Luna C18 (2)). High resolution mass spectra were measured using ESI ionization technique and Orbitrap analyzer. Mass spectra of function-

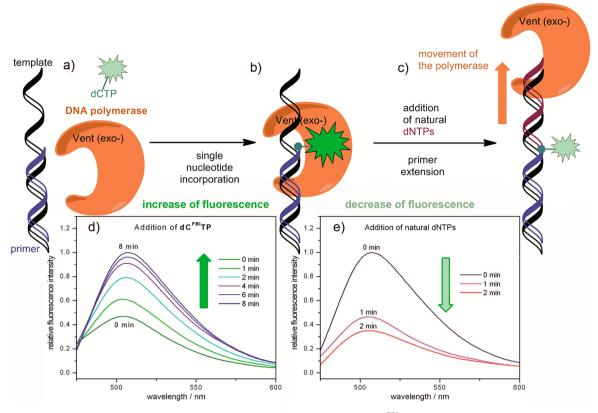


Figure 4. Scheme of time-resolved monitoring of primer extension. (a) Primer, template, $dC^{FBI}TP$, and Vent(exo-) are mixed, (b) single-nucleotide incorporation occurs, and (c) after the addition of a mixture of natural dNTPs, the PEX continues. Time-resolved fluorescence spectroscopy of (d) single-nucleotide incorporation dC^{FBI} to DNA, followed by (e) PEX after the addition of natural dNTPs.

alized DNA were measured using MALDI-TOF ionization with nitrogen laser.

General Procedure for the Synthesis of *N*-Propargyl-4-hydroxy-3,5-dimethoxybenzylidene Imidazolinones. Benzylidene oxazolinones 14 1a or 1b were refluxed with 99% ethanol (7.5 or 15 mL), propargyl amine (1.5 equiv), and potassium carbonate (1.5 equiv) for 3 h. After cooling, the formed orange precipitate was filtered and washed by cold ethanol. The precipitate was redissolved in a 1:1 mixture of ethyl acetate and 500 mM sodium acetate (pH = 3.0). The organic layer was separated, and the solvent was removed under reduced pressure.

(Z)-4-(3,5-Dimethoxy-4-hydroxybenzylidene)-2-methyl-1propargyl-imidazoline-5-one (P-MBI, 2a). P-MBI (2a) was prepared according to the general procedure from 1a (1.12 g, 4.2 mmol, 1 equiv), propargylamine (0.34 g, 6.3 mmol, 1.5 equiv), and potassium carbonate (0.86 g, 6.3 mmol, 1.5 equiv). The product was isolated as an orange solid (601 mg, 47%). Mp 180–185 °C. ¹H NMR (499.8 MHz, DMSO- d_6): 2.42 (d, 3H, $^6J = 0.6$, CH₃-2); 3.36 (t, 1H, 4J = 2.5, HC \equiv C); 3.80 (s, 6H, CH₃O); 4.45 (d, 2H, ⁴J = 2.5, CH₂N); 6.97 (s, 1H, CH=); 7.64 (s, 2H, H-o-C₆H₂OH(OMe)₂). ¹³C NMR (125.7 MHz, DMSO- d_6): 15.7 (CH₃-2); 29.14 (CH₂N); 56.2 (CH₃O); 74.8 (HC≡C); 78.7 (C≡CH); 110.5 (CH-o-C₆H₂OH- $(OMe)_2$); 124.5 $(C-i-C_6H_2OH(OMe)_2)$; 127.5 (CH=); 135.8 (C-4-i)imid); 139.1 (C-p-C₆H₂OH(OMe)₂); 148.0 (C-m-C₆H₂OH(OMe)₂); 160.8 (C-2-imid); 168.8 (C-5-imid). MS (ESI⁺): *m/z* (%) 301 (100) $[M + H]^+$, 323 (10) $[M + Na]^+$; HR-MS (ESI⁺) for $C_{16}H_{16}O_4N_2Na$: [M + Na]+ calculated 323.10023, found 323.10025.

(Z)-4-(3',5'-Difluoro-4'-hydroxybenzylidene)-2-methyl-1-propargylimidazoline-5-one (P-FBI, 2b). P-FBI (2b) was prepared according to the general procedure from 1b (500 mg, 2.09 mmol, 1 equiv), propargyl amine (0.17 g, 3.1 mmol, 1.5 equiv), and potassium carbonate (0.43 g, 3.1 mmol, 1.5 equiv). The separation required additional purification, using silica gel column chromatography (hexane/ethyl acetate 0–20% as eluent). The product was isolated as yellow solid (144 mg, 25%). Mp 204–207 °C. ¹H NMR (499.8)

MHz, CD₃OD): 2.50 (d, 3H, ${}^{6}J$ = 0.6, CH₃-2 exchageable); 2.81 (t, 1H, ${}^{4}J$ = 2.5, HC \Longrightarrow); 4.46 (d, 2H, ${}^{4}J$ = 2.5, CH₂N); 6.92 (s, 1H, HC \Longrightarrow); 7.79 (m, 2H, H-o-C₆H₂F₂OH). 13 C NMR (125.7 MHz, CD₃OD): 15.1 (CH₃-2); 30.1 (CH₂N); 73.9 (HC \Longrightarrow C \Longrightarrow CH); 116.4, 116.6 (2 × t, $J_{\text{C,F}}$ = 6.2, CH-o-C₆H₂F₂OH); 125.9 (t, $J_{\text{C,F}}$ = 9.3, C-i-C₆H₂F₂OH); 126.8 (\Longrightarrow CH); 138.0 (t, $J_{\text{C,F}}$ = 16.6, C-p-C₆H₂F₂OH); 138.8 (C-4-imid); 153.5 (dd, $J_{\text{C,F}}$ = 242.2, 7.2, C-m-C₆H₂F₂OH); 163.8 (C-2-imid); 170.7 (C-5-imid). 19 F{ 1 H} NMR (470.3 MHz, CD₃OD): 1 OD): 1 OD MS (ESI $^{+}$): 1 D; 1 C (%) 277 (50) [M + H] $^{+}$, 299 (100) [M + Na] $^{+}$; HR-MS (ESI $^{+}$) for C₁₄H₁₁O₂N₂F₂: [M + H] $^{+}$ calculated 277.07831, found 277.07822.

General Procedure for Sonogashira Cross-Coupling of Base-Halogenated Nucleoside Triphosphates Analogues (dN^ITPs) with Propargyl MBI and FBI. A mixture of H₂O/CH₃CN (2:1, 2 mL) was added to an argon-purged flask containing dCITP (0.05 mmol), an acetylene 2a or 2b (0.075 mmol, 1.5 equiv), and CuI (0.95 mg, 0.005 mmol, 10 mol %). In a separate flask, Pd(OAc)2 (0.56 mg, 0.0025 mmol, 5 mol %) and P(Ph-SO₃Na)₃ (3.59 mg, 0.00625 mmol, 2.5 equiv to Pd) were combined, evacuated, and purged with argon, followed by the addition of H₂O/CH₃CN (2:1, 0.5 mL). The mixture of the catalyst was then injected to the reaction mixture, N,Ndiisopropylethylamine (43 μ L, 0.25 mmol, 5 equiv) was added, and reaction mixture was stirred at 55 °C for 45 min. After cooling to room temperature, 200 µL of 0.5 M EDTA solution was added to the reaction mixture to remove the palladium catalyst. The products were isolated by C18 reverse phase column chromatogryphy using watermethanol (5-100%) containing 0.1 M TEAB buffer as eluent. The dNTPs were converted to sodium salt using ionex Dowex-50, evaporated and lyophilized.

5-{3'''-[(Z)-4''-(3''',5'''-Dimethoxy-4'''-hydroxybenzylidene)-2''-methylimidazoline-5''-one-1''-N-yl]-1''-propyn-1'''-yl}-2'-deoxycytidine-5'-O-triphosphate (dC^{MBI}TP, 3a). dC^{MBI}TP was prepared according to the general procedure, using dC^ITP (33 mg, 0.05 mmol, 1 equiv) and 2a (22.5 mg, 0.075 mmol, 1.5 equiv). The product was isolated as yellow solid (13.4 mg, 21%). ¹H NMR

(499.8 MHz, D_2O , pD = 7.1, phosphate buffer): 2.28 (dt, 1H, $J_{gem} =$ 14.0, $J_{2'b,1'} = J_{2'b,3'} = 6.7$, H-2'b); 2.42 (ddd, 1H, $J_{gem} = 14.0$, $J_{2'a,1'} = 6.3$, $J_{2'a,3'} = 4.0$, H-2'a); 2.51 (m, residual signal of exchangable CH₃-2); 3.89 (s, 6H, CH₃O); 4.20 (m, 3H, H-4',5'); 4.58 (dt, 1H, $J_{3',2'} = 6.7$, 4.0, $J_{3',4'} = 4.0$, H-3'); 4.70 (s, 2H, CH₂N); 6.17 (dd, 1H, $J_{1',2'} = 6.7$, 6.3, H-1'); 6.86 (s, 1H, CH=); 7.28 (s, 2H, H- σ -C₆H₂OH(OMe)₂); 8.13 (s, 1H, H-6). 13 C NMR (125.7 MHz, D_2 O, pD = 7.1, phosphate buffer): 17.1 (CH₃-2); 33.6 (CH₂N); 41.9 (CH₂-2'); 58.8 (CH₃O); 68.0 (d, $J_{C.P}$ = 5.9, CH_2 -5'); 73.1 (CH-3'); 77.2 (pyrimid-C \equiv C-imid); 88.2 (d, $J_{CP} = 9.0$, CH-4'); 89.2 (CH-1'); 91.8 (pyrimid-C \equiv C-imid); 94.2 (C-5); 112.7 (CH-o-C₆H₂OH(OMe)₂); 127.5 (C-i-C₆H₂OH-(OMe)₂); 133.1 (CH=); 137.2 (C-4-imid); 140.7 (C-p-C₆H₂OH-(OMe)₂); 148.1 (CH-6); 150.2 (C-*m*-C₆H₂OH(OMe)₂); 158.6 (C-2); 165.1 (C-2-imid); 167.7 (C-4); 173.4 (C-5-imid). ³¹P{¹H} NMR (202.3 MHz, D₂O, pD = 7.1, phosphate buffer, ref(phosphate buffer) = 2.35 ppm): -21.34 (t, J = 20.0, P_{β}); -9.99 (d, J = 20.0, P_{α}); -7.74 $(d, I = 20.0, P_y)$. MS (ESI⁻): m/z (%) 684.2 (30) [M + 2H - PO_3H]⁻, 764.2 (100) [M + 2H]⁻, 786.2 (30) [M + H + Na]⁻; HR-MS (ESI⁻) for $C_{25}H_{29}O_{17}N_5P_3$: [M + 2H]⁻ calculated 764.07768, found 764.07615.

5-{3''''-[(Z)-4''-(3''',5'''-Difluoro-4'''-hydroxybenzylidene)-2''-methylimidazoline-5''-one-1''-N-yl]-1''''-propyn-1''''-yl}-2'-deoxycytidine-5'-O-triphosphate (dC^{FBI}TP, 3b). dC^{FBI}TP was prepared according to the general procedure, using dC^ITP (33 mg, 0.05 mmol, 1 equiv) and 2b (20.7 mg, 0.075 mmol, 1.5 equiv). The product was isolated as yellow solid (11.5 mg, 28%). ¹H NMR (499.8 MHz, D_2O_2 , pD = 7.1, phosphate buffer): 2.30 (dt, 1H, $J_{cem} = 14.0$, $J_{2'b,1'} = J_{2'b,3'} = 6.4$, H-2'b); 2.43 (ddd, 1H, $J_{gem} = 14.0$, $J_{2'a,1'} = 6.4$, $J_{2'a,3'}$ = 4.1, H-2'a); 2.50 (m, residual signal of exchengable CH₃-2); 4.20 (m, 3H, H-4',5'); 4.59 (dt, 1H, $J_{3',2'} = 6.4$, 4.1, $J_{3',4'} = 4.1$, H-3'); 4.72 (s, 2H, CH₂N); 6.20 (t, 1H, $J_{1',2'}$ = 6.4, H-1'); 7.04 (s, 1H, CH=); 7.57 (m, 2H, H-o-C₆H₂F₂OH); 8.14 (s, 1H, H-6). ¹³C NMR (125.7 MHz, D_2O_1 , pD = 7.1, phosphate buffer): 17.3 (CH₃-2); 33.6 (CH₂N); 41.8 (CH_2-2') ; 67.9 (d, $J_{C,P} = 5.5$, CH_2-5'); 73.0 (CH-3'); 77.1 (pyrimid-C \equiv C-imid); 88.2 (d, $J_{C,P}$ = 8.8, CH-4'); 89.2 (CH-1'); 92.0 (pyrimid-C \equiv C-imid); 94.3 (C-5); 118.41, 118.6 (2 × t, $J_{C,F}$ = 6.6, CH-o- $C_6H_2F_2OH$); 119.0 (t, $J_{C,F} = 9.8$, $C-i-C_6H_2F_2OH$); 133.7 (CH=); 135.5 (C-4-imid); 148.1 (CH-6); 151.8 (br, C-p-C₆H₂F₂OH); 157.9 (dd, $J_{C,F} = 237.9$, 10.7, C-m-C₆H₂F₂OH); 158.7 (C-2); 163.6 (C-2imid); 167.75 (C-4); 173.5 (C-5-imid). ³¹P{¹H} NMR (202.3 MHz, D_2O_1 , pD = 7.1, phosphate buffer, ref(phosphate buffer) = 2.35 ppm): -21.30 (t, J = 19.6, P_{β}); -10.26 (d, J = 19.6, P_{α}); -6.88 (d, J = 19.6, P_{ν}). ¹⁹F{¹H} NMR (470.3 MHz, D_2O_1 , pD = 7.1, phosphate buffer): -131.70. MS (ESI⁻): m/z (%) 581.2 (20) [M + 2H-2PO₃H]⁻, 603.2 $(40) [M + H + Na - 2PO_3H]^- 660.2 (8) [M + 2H - PO_3H]^-, 740.1$ (3) $[M + 2H]^-$; HR-MS (ESI⁻) for $C_{23}H_{23}O_{15}N_5F_2P_3$: $[M + 2H]^$ calculated 740.03770, found 740.03726.

Binding Study Using SSB Protein. SSB Protein from *E. coli* was purchased from Sigma-Aldrich and concentrated 6x using Amicon Ultra 0.5 Centrifugal Filter Unit (cutoff 3KDa). The measurements were performed in 20 mM phosphate buffer pH 7.4 using three parallel samples for exact comparison (DNA mixed with binding protein, DNA diluted with buffer, and control sample — DNA mixed with BSA and glycerol). An appropriate amount of glycerol was added to negative control to refine the data from the effect of glycerol present in the stock solution of SSB protein. BSA was used as control protein. The measurements were performed with an AMINCO Bowman series 2 spectrofluorometer.

Binding Study Using p53 Protein. Wild type human full length p53 proteins were expressed in *E. coli* BL21/DE3 and purified as described previously. The measurements were performed in 50 mM KCl, 5 mM Tris pH 7.6, 2 mM DTT, 0.01% Triton-X100, using three parallel samples for exact comparison (DNA mixed with binding protein, DNA diluted with buffer, and control sample — DNA mixed with BSA). BSA was used as control protein. The measurements were performed using a PC-1 steady-state ISS spectrofluorometer.

Binding Study Using Vent(exo-) DNA Polymerase. Vent(exo-) (2 U/ μ L, 0.5 μ M, 500 μ L) was diluted with water (200 μ L) and concentrated on an Amicon Ultra Centrifugal Filter Unit (cutoff 3 kDa, Millipore) to the final volume of 75 μ L. Template (temp^{vent} 5'-

CTAGCATGAGCTCAGGCCCATGCCGCCCATG-3′, 100 μ M, 2.4 μ L), primer (prim^{vent} S′-CATGGGCGGCATGGGC-3′, 100 μ M, 2.4 μ L), dC^{FBI}TP (40 μ M, 7.8 μ L), ThermoPol reaction buffer (10×, 12 μ L) and water (20.4 μ L) were mixed. Next, the preconcentrated solution of Vent(exo-) was added, and the fluorescence was measured immediately and then after every minute until the fluorescence stopped increasing (after 8 min). Then a mixture of natural dNTPs (4 mM, 6 μ L) was added to the reaction mixture, and the fluorescence was measured every minute until the change in fluorescence intensity was completed (2 min).

Primer Extension. Primer Extension for Analysis by Polyacrylamide Gel Electrophoresis. The reaction mixture (20 μ L) contained primer (0.15 μ M), template (0.22 μ M), natural dNTPs (200 μ M), dNRTPs, buffer, and DNA polymerase (0.1 U). The reaction mixture was incubated for 15 min (30 min for quadruple-modified ONs) at 60 °C and analyzed by polyacrylamide gel electrophoresis. The primers were ³²P-prelabeled at 5'-end to allow radiographic detection.

Preparative Primer Extension for Fluorescence Studies. Reaction mixture (500 μ L) for the oligonucleotide preparation contained primer (6.6 μ M), 5'-biotinylated template (6.6 μ M), dNTPs (200 μ M), dNRTPs (200 μ M), 10x buffer, and KOD XL DNA polymerase (7 U). The reaction was incubated for 40 min. Biotinylated templates were used to allow magnetoseparation.

Isolation and Characterization of Single-Strand Oligonucletides by Magnetoseparatic Procedure. MagPrep P-25 (50 μ L, Streptavidin Particles stock solution from Novagen) was washed three times with 450 μ L of buffer (0.3 M NaCl, 10 mM TRIS, pH = 7.4). The reaction mixture containing 0.3 M NaCl was added to a suspension of magnetic beads. The suspension was shaken for 40 min at room temperature, allowing binding of oligonucleotides to MagPrep beads. The beads were washed three times with 500 µL of PBS solution (0.14 M NaCl, 3 mM KCl, 4 mM sodium phosphate pH = 7.4), three times with 500 μ L of TRIS buffer (0.3 M NaCl, 10 mM TRIS, pH = 7.4), and three times with 500 μ L of deionized water. Single-stranded oligonucleotides were released by shaking and heating the sample to 60 $^{\circ}\text{C}$ for 2 min, followed by shaking with additional magnetic beads in Tris buffer to remove small amounts of biotinylated template released during heating at 60 °C in deionized water. Each medium exchange was performed using a magnetoseparator (Dynal, Norway). The oligonucleotides were desalted and concentrated using Amicon Ultra 0.5 Centrifugal Filter Unit (cutoff 3 kDa). Characterization of oligonucleotides by MS (MALDI-TOF): [M + H]+ pex^{rnd16}(dC^{MBI}) calcd 10810.5, found 10810.2; pex^{rnd16}(dC^{FBI}) calcd 10715.1, found 10716.6.

ASSOCIATED CONTENT

S Supporting Information

Additional figures of fluorescence and UV-vis spectra and copies of all NMR spectra and MALDI-TOF spectra. This material is available free of charge via the Internet at http://pubs.acs.org/.

AUTHOR INFORMATION

Corresponding Author

*E-mail: hocek@uochb.cas.cz.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Academy of Sciences of the Czech Republic (RVO: 61388963 and 68081707), by the Czech Science Foundation (203/09/0317 and P206/12/G151), and by Gilead Sciences, Inc. (Foster City, CA, U.S.A.).

DEDICATION

Dedicated to the memory of Dr. Detlef Schröder.

■ REFERENCES

- (1) Reviews: (a) Sinkeldam, R. W.; Greco, N. J.; Tor, Y. Chem. Rev. **2010**, 110, 2579–2619. (b) Juskowiak, B. Anal. Bioanal. Chem. **2011**, 399, 3157–3176.
- (2) (a) Xu, D. G.; Evans, K. O.; Norlund, T. M. Biochemistry **1994**, 33, 9592–959. (b) Stoop, M.; Zahn, A.; Leumann, C. J. Tetrahedron **2007**, 63, 3440–3449. (c) Hudson, R. H. E.; Ghorbani-Choghamarani, A. Org. Biomol. Chem. **2007**, 5, 1845–1848.
- (3) (a) Okamoto, A.; Tanaka, K.; Fukuta, T.; Saito, I. J. Am. Chem. Soc. 2003, 125, 9296–9297. (b) Seo, Y. J.; Ryu, J. H.; Kim, B. H. Org. Lett. 2005, 7, 4931–4933. (c) Miyata, K.; Tamamushi, R.; Ohkubo, A.; Taguchi, H.; Seio, K.; Santa, T.; Sekine, M. Org. Lett. 2006, 8, 1545–1548. (d) Tainaka, K.; Tanaka, K.; Ikeda, S.; Nishiza, K.; Unzai, T.; Fujiwara, Y.; Saito, I.; Okamoto, A. J. Am. Chem. Soc. 2007, 129, 4776–4784. (e) Hudson, R. H. E.; Ghorbani-Choghamarani, A. Synlett 2007, 6, 870–873. (f) Xiao, Q.; Ranasinghe, R. T.; Tang, A. M. P.; Brown, T. Tetrahedron 2007, 63, 3483–3490. (g) Wanninger-Weiss, C.; Valis, L.; Wagenknecht, H.-A. Bioorg. Med. Chem. 2008, 16, 100–106. (h) Cekan, P.; Sigurdsson, S. T. Chem. Commun. 2008, 29, 3393–3395.
- (4) (a) Kimura, T.; Kawai, K.; Majima, T. Org. Lett. 2005, 7, 5829–5832. (b) Kimura, T.; Kawai, K.; Majima, T. Chem. Commun. 2006, 14, 1542–1544. (c) Okamoto, A.; Tainaka, K.; Fujiwara, Y. J. Org. Chem. 2006, 71, 3592–3598. (d) Sinkeldam, R. W.; Tor, Y. Org. Biomol. Chem. 2007, 5, 2523–2528. (e) Sinkeldam, R. W.; Greco, N. J.; Tor, Y. ChemBioChem 2008, 9, 706–709. (f) Fakhari, M. A.; Rokita, S. E. Chem. Commun. 2011, 47, 4222–4224.
- (5) (a) Srivatsan, S. G.; Tor, Y. J. Am. Chem. Soc. 2007, 129, 2044–2053. (b) Parsons, J.; Hermann, T. Tetrahedron 2007, 63, 3548–3552.
- (6) (a) Arzumanov, A.; Godde, F.; Moreau, S.; Toulme, J. J.; Weeds, A.; Gait, M. J. Helv. Chim. Acta 2000, 83, 1424–1436. (b) Jeong, H. S.; Kang, S.; Lee, J. Y.; Kim, B. H. Org. Biomol. Chem. 2009, 7, 921–925. (c) Srivatsan, S. G.; Tor, Y. Tetrahedron 2007, 63, 3601–3607.
- (7) Okamoto, A.; Tainaka, K.; Saito, I. Bioconjugate Chem. 2005, 16, 1105-1111.
- (8) Dziuba, D.; Postupalenko, V. Y.; Spadafora, M.; Klymchenko, A. S.; Guerineau, V.; Mely, Y.; Benhida, R.; Burger, A. *J. Am. Chem. Soc.* **2012**, *134*, 10209–10213.
- (9) (a) Loving, G. S.; Imperiali, B. J. Am. Chem. Soc. 2008, 130, 13630–13638. (b) Loving, G. S.; Imperiali, B. Bioconjugate Chem. 2009, 20, 2133–2141. (c) Goguen, B. N.; Loving, G. S.; Imperiali, B. Bioorg. Med. Chem. Lett. 2011, 21, 5058–5061.
- (10) (a) Nakayama, K.; Endo, M.; Fujitsuka, M.; Majima, T. J. Phys. Chem. B 2006, 110, 21311–21318. (b) Nakayama, K.; Endo, M.; Fujitsuka, M.; Majima, T. Photochem. Photobiol. Sci. 2007, 6, 836–841. (11) Riedl, J.; Pohl, R.; Orsag, P.; Fojta, M.; Hocek, M. Chem. Sci. 2012, 3, 2797–2806.
- (12) (a) Shimomura, O. FEBS Lett. 1979, 104, 220–222. (b) Heim, R.; Prasher, D. C.; Tsien, R. Y. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 12501–12504. (c) Cubitt, A. B.; Heim, R.; Adams, S. R.; Boyd, A. E.; Gross, L. A.; Tsien, R. Y. Trends Biochem. Sci. 1995, 20, 448–455. (d) Reid, B. G.; Flynn, G. C. Biochemistry 1997, 36, 6786–6791. (e) Ormö, M.; Cubitt, A.; Kallio, K.; Gross, L.; Tsien, R. Y.; Remington, S. Science 1996, 273, 1392–1395.
- (13) (a) Ward, W. W.; Cody, C. W.; Hart, R. C.; Cormier, M. J. *Photochem. Photobiol.* **1980**, *31*, 611–615. (b) Niwa, H.; Inouye, S.; Hirano, T.; Matsuno, T.; Kojima, S. *Proc. Natl. Acad. Sci. U.S.A.* **1996**, 93, 13617–13622.
- (14) Paige, J. S.; Wu, K. Y.; Jaffrey, S. R. Science 2011, 333, 642-646.
- (15) Wenge, U.; Wagenknecht, H.-A. Synthesis 2011, 502-508.
- (16) Reviews: (a) Hocek, M.; Fojta, M. Org. Biomol. Chem. 2008, 6, 2233–2241. (b) Hocek, M.; Fojta, M. Chem. Soc. Rev. 2011, 40, 5802–5814. Recent examples: (c) Jäger, S.; Rasched, G.; Kornreich-Leshem, H.; Engeser, M.; Thum, O.; Famulok, M. J. Am. Chem. Soc. 2005, 127, 15071–15082. (d) Obeid, S.; Yulikow, M.; Jeschke, G.; Marx, A. Angew. Chem., Int. Ed. 2008, 47, 6782–6785. (e) Borsenberger, V.; Kukwikila, M.; Howorka, S. Org. Biomol. Chem. 2009, 7, 3826–3835. (f) Wirges, C. T.; Timper, J.; Fischler, M.; Sologubenko, A. S.; Mayer, J.; Simon, U.; Carell, T. Angew. Chem., Int. Ed. 2009, 48, 219–223.

- (g) Baccaro, A.; Steck, A.-L.; Marx, A. Angew. Chem., Int. Ed. 2012, 51, 254-257.
- (17) Examples of cross-couplings of dNTPs followed by polymerase incorporations: (a) Brázdilová, P.; Vrábel, M.; Pohl, R.; Pivoňková, H.; Havran, L.; Hocek, M.; Fojta, M. Chem.—Eur. J. 2007, 13, 9527— 9533. (b) Cahová, H.; Havran, L.; Brázdilová, P.; Pivoňková, H.; Pohl, R.; Fojta, M.; Hocek, M. Angew. Chem., Int. Ed. 2008, 47, 2059-2062. (c) Vrábel, M.; Horáková, P.; Pivoňková, H.; Kalachova, L.; Černocká, H.; Cahová, H.; Pohl, R.; Šebest, P.; Havran, L.; Hocek, M.; Fojta, M. Chem.—Eur. J. 2009, 15, 1144-1154. (d) Macíčková-Cahová, H.; Hocek, M. Nucleic Acids Res. 2009, 37, 7612-7622. (e) Raindlová, V.; Pohl, R.; Šanda, M.; Hocek, M. Angew. Chem., Int. Ed. 2010, 49, 1064-1066. (f) Macíčková-Cahová, H.; Pohl, R.; Hocek, M. ChemBioChem 2011, 12, 431-438. (g) Kielkowski, P.; Macíčková-Cahová, H.; Pohl, R.; Hocek, M. Angew. Chem., Int. Ed. 2011, 50, 8727-8730. (h) Balintová, J.; Pohl, R.; Horáková, P.; Vidláková, P.; Havran, L.; Fojta, M.; Hocek, M. Chem.—Eur. J. 2011, 17, 14063-14073. (i) Kalachova, L.; Pohl, R.; Hocek, M. Org. Biomol. Chem. 2012, 10, 49-55. (j) Riedl, J.; Pohl, R.; Rulíšek, L.; Hocek, M. J. Org. Chem. 2012, 77, 1026-1044. (k) Raindlová, V.; Pohl, R.; Hocek, M. Chem.-Eur. J. 2012, 18, 4080-4087.
- (18) Wang, Y.; Schwedes, J. F.; Parks, D.; Mann, K.; Tegtmeyer, P. Mol. Cell. Biol. 1995, 15, 2157–2165.
- (19) (a) Matlashewski, G.; Lamb, P.; Pim, D.; Peacock, J.; Crawford, L.; Benchimol, S. *EMBO J.* **1984**, *3*, 3257–3262. (b) Isobe, M.; Emanuel, B. S.; Givol, D.; Oren, M.; Croce, C. M. *Nature* **1986**, 320, 84–85. (c) Kern, S. E.; Kinzler, K. W.; Bruskin, A.; Jarosz, D.; Friedman, P.; Prives, C.; Vogelstein, B. *Science* **1991**, 252, 1708–1711. (d) McBride, O. W.; Merry, D.; Givol, D. *Proc. Natl. Acad. Sci. U.S.A.* **1986**, 83, 130–134.
- (20) Lohman, T. M.; Overman, L. B. J. Biol. Chem. 1985, 260, 3594–3603.
- (21) Examples of FRET for monitoring polymerase reactions: (a) Goedken, E. R.; Levitus, M.; Johnson, A.; O'Donell, M.; Kuriyan, J. *J. Mol. Biol.* **2004**, 336, 1047–1059. (b) Maxwell, B. A.; Xu, C.; Suo, Z. *J. Biol. Chem.* **2012**, 287, 13040–13047.
- (22) (a) Brazdova, M.; Palecek, J.; Cherny, D. I.; Billova, S.; Fojta, M.; Pecinka, P.; Vojtesek, B.; Jovin, T. M.; Palecek, E. *Nucleic Acids Res.* **2002**, *30*, 4966–4974. (b) Fojta, M.; Pivonkova, H.; Brazdova, M.; Nemcova, K.; Palecek, J.; Vojtesek, B. *Eur. J. Biochem.* **2004**, *271*, 3865–3876.